Nicksxs's Blog

What hurts more, the pain of hard work or the pain of regret?

PHP抽象类和接口

  • 抽象类与接口
  • 抽象类内可以包含非抽象函数,即可实现函数
  • 抽象类内必须包含至少一个抽象方法,抽象类和接口均不能实例化
  • 抽象类可以设置访问级别,接口默认都是public
  • 类可以实现多个接口但不能继承多个抽象类
  • 类必须实现抽象类和接口里的抽象方法,不一定要实现抽象类的非抽象方法
  • 接口内不能定义变量,但是可以定义常量

示例代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
<?php
interface int1{
const INTER1 = 111;
function inter1();
}
interface int2{
const INTER1 = 222;
function inter2();
}
abstract class abst1{
public function abstr1(){
echo 1111;
}
abstract function abstra1(){
echo 'ahahahha';
}
}
abstract class abst2{
public function abstr2(){
echo 1111;
}
abstract function abstra2();
}
class normal1 extends abst1{
protected function abstr2(){
echo 222;
}
}

result

1
2
3
PHP Fatal error:  Abstract function abst1::abstra1() cannot contain body in new.php on line 17

Fatal error: Abstract function abst1::abstra1() cannot contain body in php on line 17

problem

Given a sorted integer array without duplicates, return the summary of its ranges.

For example, given [0,1,2,4,5,7], return ["0->2","4->5","7"].

题解

每一个区间的起点nums[i]加上j是否等于nums[i+j]
参考

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public:
vector<string> summaryRanges(vector<int>& nums) {
int i = 0, j = 1, n;
vector<string> res;
n = nums.size();
while(i < n){
j = 1;
while(j < n && nums[i+j] - nums[i] == j) j++;
res.push_back(j <= 1 ? to_string(nums[i]) : to_string(nums[i]) + "->" + to_string(nums[i + j - 1]));
i += j;
}
return res;
}
};

problem

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn’t one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

题解

参考,滑动窗口,跟之前Data Structure课上的online算法有点像,链接

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int len = nums.size();
if(len == 0) return 0;
int minlen = INT_MAX;
int sum = 0;

int left = 0;
int right = -1;
while(right < len)
{
while(sum < s && right < len)
sum += nums[++right];
if(sum >= s)
{
minlen = minlen < right - left + 1 ? minlen : right - left + 1;
sum -= nums[left++];
}
}
return minlen > len ? 0 : minlen;
}
};

problem

A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bottom represent the minutes (0-59).

Each LED represents a zero or one, with the least significant bit on the right.

For example, the above binary watch reads “3:25”.

Given a non-negative integer n which represents the number of LEDs that are currently on, return all possible times the watch could represent.

Example:

1
2
Input: n = 1
Return: ["1:00", "2:00", "4:00", "8:00", "0:01", "0:02", "0:04", "0:08", "0:16", "0:32"]

Note:

  • The order of output does not matter.
  • The hour must not contain a leading zero, for example “01:00” is not valid, it should be “1:00”.
  • The minute must be consist of two digits and may contain a leading zero, for example “10:2” is not valid, it should be “10:02”.

题解

又是参(chao)考(xi)别人的代码,嗯,就是这么不要脸,链接

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
vector<string> readBinaryWatch(int num) {
vector<string> res;
for (int h = 0; h < 12; ++h) {
for (int m = 0; m < 60; ++m) {
if (bitset<10>((h << 6) + m).count() == num) {
res.push_back(to_string(h) + (m < 10 ? ":0" : ":") + to_string(m));
}
}
}
return res;
}
};

question

34. Search for a Range

Original Page

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm’s runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

analysis

一开始就想到了二分查找,但是原来做二分查找的时候一般都是找到确定的那个数就完成了,
这里的情况比较特殊,需要找到整个区间,所以需要两遍查找,并且一个是找到小于target
的最大索引,一个是找到大于target的最大索引,代码参考leetcode discuss,这位仁
兄也做了详细的分析解释。

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> ret(2, -1);
int i = 0, j = nums.size() - 1;
int mid;
while(i < j){
mid = (i + j) / 2;
if(nums[mid] < target) i = mid + 1;
else j = mid;
}
if(nums[i] != target) return ret;
else {
ret[0] = i;
if((i+1) < (nums.size() - 1) && nums[i+1] > target){
ret[1] = i;
return ret;
}
} //一点小优化
j = nums.size() - 1;
while(i < j){
mid = (i + j) / 2 + 1;
if(nums[mid] > target) j = mid - 1;
else i = mid;
}
ret[1] = j;
return ret;
}
};
0%