Nicksxs's Blog

What hurts more, the pain of hard work or the pain of regret?

一说到这个主题,想到的应该是双亲委派模型,不过讲的包括但不限于这个,主要内容是参考深入理解 Java 虚拟机书中的介绍,
一个类型的生命周期包含了七个阶段,加载,验证,准备,解析,初始化,使用,卸载。

  • 加载

  1. 通过一个类的全限定名来获取定义此类的二进制字节流
  2. 将这个字节流代表的静态存储结构转化为方法区的运行时数据结构
  3. 在内存中生成了一个代表这个类的 java.lang.Class 对象,作为方法区这个类的各种数据的访问入口
  • 验证

  1. 文件格式验证
  2. 元数据验证
  3. 字节码验证
  4. 符号引用验证
  • 准备

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段

  • 解析

解析阶段是 Java 虚拟机将常量池内的符号引用替换为直接引用的过程

以上验证准备解析 三个阶段又合称为链接阶段,链接阶段要做的是将加载到JVM中的二进制字节流的类数据信息合并到JVM的运行时状态中。

  • 初始化

类的初始化阶段是类加载过程的最后一个步骤,也是除了自定义类加载器之外将主动权交给了应用程序,其实就是执行类构造器()方法的过程,()并不是我们在 Java 代码中直接编写的方法,它是 Javac编译器的自动生成物,()方法是由编译器自动收集类中的所有类变量的复制动作和静态句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在原文件中出现的顺序决定的,静态语句块中只能访问定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以复制,但是不能访问,同时还要保证父类的执行先于子类,然后保证多线程下的并发问题

最终,方法区会存储当前类类信息,包括类的静态变量、类初始化代码(定义静态变量时的赋值语句 和 静态初始化代码块)、实例变量定义、实例初始化代码(定义实例变量时的赋值语句实例代码块和构造方法)和实例方法,还有父类的类信息引用。

在前司和目前公司,用的配置中心都是使用的 Apollo,经过了业界验证,比较强大的配置管理系统,特别是在0.10 后开始支持对使用 value 注解的配置值进行自动更新,今天刚好有个同学问到我,就顺便写篇文章记录下,其实也是借助于 spring 强大的 bean 生命周期管理,可以实现BeanPostProcessor接口,使用postProcessBeforeInitialization方法,来对bean 内部的属性和方法进行判断,是否有 value 注解,如果有就是将它注册到一个 map 中,可以看到这个方法com.ctrip.framework.apollo.spring.annotation.SpringValueProcessor#processField

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Override
protected void processField(Object bean, String beanName, Field field) {
// register @Value on field
Value value = field.getAnnotation(Value.class);
if (value == null) {
return;
}
Set<String> keys = placeholderHelper.extractPlaceholderKeys(value.value());

if (keys.isEmpty()) {
return;
}

for (String key : keys) {
SpringValue springValue = new SpringValue(key, value.value(), bean, beanName, field, false);
springValueRegistry.register(beanFactory, key, springValue);
logger.debug("Monitoring {}", springValue);
}
}

然后我们看下这个springValueRegistry是啥玩意

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class SpringValueRegistry {
private static final long CLEAN_INTERVAL_IN_SECONDS = 5;
private final Map<BeanFactory, Multimap<String, SpringValue>> registry = Maps.newConcurrentMap();
private final AtomicBoolean initialized = new AtomicBoolean(false);
private final Object LOCK = new Object();

public void register(BeanFactory beanFactory, String key, SpringValue springValue) {
if (!registry.containsKey(beanFactory)) {
synchronized (LOCK) {
if (!registry.containsKey(beanFactory)) {
registry.put(beanFactory, LinkedListMultimap.<String, SpringValue>create());
}
}
}

registry.get(beanFactory).put(key, springValue);

// lazy initialize
if (initialized.compareAndSet(false, true)) {
initialize();
}
}

这类其实就是个 map 来存放 springvalue,然后有com.ctrip.framework.apollo.spring.property.AutoUpdateConfigChangeListener来监听更新操作,当有变更时

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@Override
public void onChange(ConfigChangeEvent changeEvent) {
Set<String> keys = changeEvent.changedKeys();
if (CollectionUtils.isEmpty(keys)) {
return;
}
for (String key : keys) {
// 1. check whether the changed key is relevant
Collection<SpringValue> targetValues = springValueRegistry.get(beanFactory, key);
if (targetValues == null || targetValues.isEmpty()) {
continue;
}

// 2. check whether the value is really changed or not (since spring property sources have hierarchies)
// 这里其实有一点比较绕,是因为 Apollo 里的 namespace 划分,会出现 key 相同,但是 namespace 不同的情况,所以会有个优先级存在,所以需要去校验 environment 里面的是否已经更新,如果未更新则表示不需要更新
if (!shouldTriggerAutoUpdate(changeEvent, key)) {
continue;
}

// 3. update the value
for (SpringValue val : targetValues) {
updateSpringValue(val);
}
}
}

其实原理很简单,就是得了解知道下

题目介绍

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7],

1
2
3
4
5
  3
/ \
9 20
/ \
15 7

返回它的最大深度 3 。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 主体是个递归的应用
public int maxDepth(TreeNode root) {
// 节点的退出条件之一
if (root == null) {
return 0;
}
int left = 0;
int right = 0;
// 存在左子树,就递归左子树
if (root.left != null) {
left = maxDepth(root.left);
}
// 存在右子树,就递归右子树
if (root.right != null) {
right = maxDepth(root.right);
}
// 前面返回后,左右取大者
return Math.max(left + 1, right + 1);
}

分析

其实对于树这类题,一般是以递归形式比较方便,只是要注意退出条件

终于回忆起来了,年纪大了写这种东西真的要立马写,不然很容易想不起来,那天应该是 9 月 12 日,也就是上周六,因为我爸也去了,而且娘亲(丈母娘,LD 这么叫,我也就随了她这么叫,当然是背后,当面就叫妈)也在那,早上一到那二爹就给我爸指挥了活,要挖一条院子的出水道,自己想出来的词,因为觉得下水道是竖的,在那稍稍帮了一会会忙,然后我还是比较惯例的跟着 LD 还有娘亲去住的家里,主要是老丈人可能也不太想让我干太累的活,因为上次已经差不多把三楼都整理干净了,然后就是二楼了,二楼说实话我也帮不上什么忙,主要是衣服被子什么的,正好是有张以前小孩子睡过的那种摇篮床,看上去虽然有一些破损,整体还是不错的,所以打算拿过去,我就负责把它拆掉了,比较简单的是只要拧螺丝就行了,但是其实是用了好多好多工具才搞定的,一开始只要螺丝刀就行了,但是因为年代久了,后面的螺帽也有点锈住或者本身就会串着会一起动,所以拿来了个扳手,大部分的其实都被这两个工具给搞定了,但是后期大概还剩下四分之一的时候,有一颗完全锈住,并且螺纹跟之前那些都不一样,但是这个已经是最大的螺丝刀了,也没办法换个大的了,所以又去找来个一字的,因为十字的不是也可以用一字的拧嘛,结果可能是我买的工具箱里的一字螺丝刀太新了,口子那很锋利,直接把螺丝花纹给划掉了,大的小的都划掉,然后真的变成凹进去一个圆柱体了,然后就想能不能隔一层布去拧,然而因为的确是已经变成圆柱体了,布也不太给力,不放弃的我又去找来了个老虎钳,妄图把划掉的螺丝用老虎钳钳住,另一端用扳手拧开螺帽,但是这个螺丝跟螺帽真的是生锈的太严重了,外加上钳不太牢,完全是两边一起转,实在是没办法了,在征得同意之后,直接掰断了,火死了,一颗螺丝折腾得比我拆一张床还久,那天因为早上去的也比较晚了,然后就快吃午饭了,正好想着带一点东西过去,就把一些脸盆,泡脚桶啥的拿过去了,先是去吃了饭,还是在那家快餐店,菜的口味还是依然不错,就是人比较多,我爸旁边都是素菜,都没怎么吃远一点的荤菜,下次要早点去,把荤菜放我爸旁边😄(PS:他们家饭还是依然尴尬,需要等),吃完就开到在修的房子那把东西拿了出来,我爸已经动作很快的打了一小半的地沟了,说实话那玩意真的是很重,我之前把它从三楼拿下来,就觉得这个太重了,这次还要用起来,感觉我的手会分分钟废掉,不过一开始我还是跟着LD去了住的家里,惯例睡了午觉,那天睡得比较踏实,竟然睡了一个小时,醒了想了下,其实LD她们收拾也用不上我(没啥力气活),我还是去帮我爸他们,跟LD说了下就去了在修的老房子那,两位老爹在一起钻地,看着就很累,我连忙上去想换一会他们,因为刚好是钻到混凝土地线,特别难,力道不够就会滑开,用蛮力就是钻进去拔不出来,原理是因为本身浇的时候就是很紧实的,需要边钻边动,那家伙实在是太重了,真的是汗如雨下,基本是三个人轮流来,我是个添乱的,经常卡住,然后把地线,其实就是一条混凝土横梁,里面还有14跟18的钢筋,需要割断,这个割断也是很有技巧,钢筋本身在里面是受到挤压的,直接用切割的,到快断掉的时候就会崩一下,非常危险,还是老丈人比较有经验,要留一点点,然后直接用榔头敲断就好了,本来以为这个是最难的了,结果下面是一块非常大的青基石,而且也是石头跟石头挤一块,边上一点点打钻有点杯水车薪,后来是用那种螺旋的钻,钻四个洞,相对位置大概是个长方形,这样子把中间这个长方形钻出来就比较容易地能拿出来了,后面的也容易搞出来了,后面的其实难度不是特别大了,主要是地沟打好之后得看看高低是不是符合要求的,不能本来是往外排水的反而外面高,这个怎么看就又很有技巧了,一般在地上的只要侧着看一下就好了,考究点就用下水平尺,但是在地下的,不用水平尺,其实可以借助于地沟里正要放进去的水管,放点水进去,看水往哪流就行了,铺好水管后,就剩填埋的活了,不是太麻烦了,那天真的是累到了,打那个混凝土的时候我真的是把我整个人压上去了,不过也挺爽的,有点把平时无处发泄的蛮力发泄出去了。

又 roll 到了一个以前做过的题,不过现在用 Java 也来写一下,是 easy 级别的,所以就简单说下

简要介绍

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.
就是给了两个链表,用来表示两个非负的整数,在链表中倒序放着,每个节点包含一位的数字,把他们加起来以后也按照原来的链表结构输出

样例

example 1

1
2
3
Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [7,0,8]
Explanation: 342 + 465 = 807.

example 2

1
2
Input: l1 = [0], l2 = [0]
Output: [0]

example 3

1
2
Input: l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
Output: [8,9,9,9,0,0,0,1]

题解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode root = new ListNode();
if (l1 == null && l2 == null) {
return root;
}
ListNode tail = root;
int entered = 0;
// 这个条件加了 entered,就是还有进位的数
while (l1 != null || l2 != null || entered != 0) {
int temp = entered;
if (l1 != null) {
temp += l1.val;
l1 = l1.next;
}
if (l2 != null) {
temp += l2.val;
l2 = l2.next;
}
entered = (temp - temp % 10) / 10;
tail.val = temp % 10;
// 循环内部的控制是为了排除最后的空节点
if (l1 != null || l2 != null || entered != 0) {
tail.next = new ListNode();
tail = tail.next;
}
}
// tail = null;
return root;
}

这里唯二需要注意的就是两个点,一个是循环条件需要包含进位值还存在的情况,还有一个是最后一个节点,如果是空的了,就不要在 new 一个出来了,写的比较挫

0%