Nicksxs's Blog

What hurts more, the pain of hard work or the pain of regret?

在前司和目前公司,用的配置中心都是使用的 Apollo,经过了业界验证,比较强大的配置管理系统,特别是在0.10 后开始支持对使用 value 注解的配置值进行自动更新,今天刚好有个同学问到我,就顺便写篇文章记录下,其实也是借助于 spring 强大的 bean 生命周期管理,可以实现BeanPostProcessor接口,使用postProcessBeforeInitialization方法,来对bean 内部的属性和方法进行判断,是否有 value 注解,如果有就是将它注册到一个 map 中,可以看到这个方法com.ctrip.framework.apollo.spring.annotation.SpringValueProcessor#processField

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Override
protected void processField(Object bean, String beanName, Field field) {
// register @Value on field
Value value = field.getAnnotation(Value.class);
if (value == null) {
return;
}
Set<String> keys = placeholderHelper.extractPlaceholderKeys(value.value());

if (keys.isEmpty()) {
return;
}

for (String key : keys) {
SpringValue springValue = new SpringValue(key, value.value(), bean, beanName, field, false);
springValueRegistry.register(beanFactory, key, springValue);
logger.debug("Monitoring {}", springValue);
}
}

然后我们看下这个springValueRegistry是啥玩意

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class SpringValueRegistry {
private static final long CLEAN_INTERVAL_IN_SECONDS = 5;
private final Map<BeanFactory, Multimap<String, SpringValue>> registry = Maps.newConcurrentMap();
private final AtomicBoolean initialized = new AtomicBoolean(false);
private final Object LOCK = new Object();

public void register(BeanFactory beanFactory, String key, SpringValue springValue) {
if (!registry.containsKey(beanFactory)) {
synchronized (LOCK) {
if (!registry.containsKey(beanFactory)) {
registry.put(beanFactory, LinkedListMultimap.<String, SpringValue>create());
}
}
}

registry.get(beanFactory).put(key, springValue);

// lazy initialize
if (initialized.compareAndSet(false, true)) {
initialize();
}
}

这类其实就是个 map 来存放 springvalue,然后有com.ctrip.framework.apollo.spring.property.AutoUpdateConfigChangeListener来监听更新操作,当有变更时

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@Override
public void onChange(ConfigChangeEvent changeEvent) {
Set<String> keys = changeEvent.changedKeys();
if (CollectionUtils.isEmpty(keys)) {
return;
}
for (String key : keys) {
// 1. check whether the changed key is relevant
Collection<SpringValue> targetValues = springValueRegistry.get(beanFactory, key);
if (targetValues == null || targetValues.isEmpty()) {
continue;
}

// 2. check whether the value is really changed or not (since spring property sources have hierarchies)
// 这里其实有一点比较绕,是因为 Apollo 里的 namespace 划分,会出现 key 相同,但是 namespace 不同的情况,所以会有个优先级存在,所以需要去校验 environment 里面的是否已经更新,如果未更新则表示不需要更新
if (!shouldTriggerAutoUpdate(changeEvent, key)) {
continue;
}

// 3. update the value
for (SpringValue val : targetValues) {
updateSpringValue(val);
}
}
}

其实原理很简单,就是得了解知道下

题目介绍

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7],

1
2
3
4
5
  3
/ \
9 20
/ \
15 7

返回它的最大深度 3 。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 主体是个递归的应用
public int maxDepth(TreeNode root) {
// 节点的退出条件之一
if (root == null) {
return 0;
}
int left = 0;
int right = 0;
// 存在左子树,就递归左子树
if (root.left != null) {
left = maxDepth(root.left);
}
// 存在右子树,就递归右子树
if (root.right != null) {
right = maxDepth(root.right);
}
// 前面返回后,左右取大者
return Math.max(left + 1, right + 1);
}

分析

其实对于树这类题,一般是以递归形式比较方便,只是要注意退出条件

终于回忆起来了,年纪大了写这种东西真的要立马写,不然很容易想不起来,那天应该是 9 月 12 日,也就是上周六,因为我爸也去了,而且娘亲(丈母娘,LD 这么叫,我也就随了她这么叫,当然是背后,当面就叫妈)也在那,早上一到那二爹就给我爸指挥了活,要挖一条院子的出水道,自己想出来的词,因为觉得下水道是竖的,在那稍稍帮了一会会忙,然后我还是比较惯例的跟着 LD 还有娘亲去住的家里,主要是老丈人可能也不太想让我干太累的活,因为上次已经差不多把三楼都整理干净了,然后就是二楼了,二楼说实话我也帮不上什么忙,主要是衣服被子什么的,正好是有张以前小孩子睡过的那种摇篮床,看上去虽然有一些破损,整体还是不错的,所以打算拿过去,我就负责把它拆掉了,比较简单的是只要拧螺丝就行了,但是其实是用了好多好多工具才搞定的,一开始只要螺丝刀就行了,但是因为年代久了,后面的螺帽也有点锈住或者本身就会串着会一起动,所以拿来了个扳手,大部分的其实都被这两个工具给搞定了,但是后期大概还剩下四分之一的时候,有一颗完全锈住,并且螺纹跟之前那些都不一样,但是这个已经是最大的螺丝刀了,也没办法换个大的了,所以又去找来个一字的,因为十字的不是也可以用一字的拧嘛,结果可能是我买的工具箱里的一字螺丝刀太新了,口子那很锋利,直接把螺丝花纹给划掉了,大的小的都划掉,然后真的变成凹进去一个圆柱体了,然后就想能不能隔一层布去拧,然而因为的确是已经变成圆柱体了,布也不太给力,不放弃的我又去找来了个老虎钳,妄图把划掉的螺丝用老虎钳钳住,另一端用扳手拧开螺帽,但是这个螺丝跟螺帽真的是生锈的太严重了,外加上钳不太牢,完全是两边一起转,实在是没办法了,在征得同意之后,直接掰断了,火死了,一颗螺丝折腾得比我拆一张床还久,那天因为早上去的也比较晚了,然后就快吃午饭了,正好想着带一点东西过去,就把一些脸盆,泡脚桶啥的拿过去了,先是去吃了饭,还是在那家快餐店,菜的口味还是依然不错,就是人比较多,我爸旁边都是素菜,都没怎么吃远一点的荤菜,下次要早点去,把荤菜放我爸旁边😄(PS:他们家饭还是依然尴尬,需要等),吃完就开到在修的房子那把东西拿了出来,我爸已经动作很快的打了一小半的地沟了,说实话那玩意真的是很重,我之前把它从三楼拿下来,就觉得这个太重了,这次还要用起来,感觉我的手会分分钟废掉,不过一开始我还是跟着LD去了住的家里,惯例睡了午觉,那天睡得比较踏实,竟然睡了一个小时,醒了想了下,其实LD她们收拾也用不上我(没啥力气活),我还是去帮我爸他们,跟LD说了下就去了在修的老房子那,两位老爹在一起钻地,看着就很累,我连忙上去想换一会他们,因为刚好是钻到混凝土地线,特别难,力道不够就会滑开,用蛮力就是钻进去拔不出来,原理是因为本身浇的时候就是很紧实的,需要边钻边动,那家伙实在是太重了,真的是汗如雨下,基本是三个人轮流来,我是个添乱的,经常卡住,然后把地线,其实就是一条混凝土横梁,里面还有14跟18的钢筋,需要割断,这个割断也是很有技巧,钢筋本身在里面是受到挤压的,直接用切割的,到快断掉的时候就会崩一下,非常危险,还是老丈人比较有经验,要留一点点,然后直接用榔头敲断就好了,本来以为这个是最难的了,结果下面是一块非常大的青基石,而且也是石头跟石头挤一块,边上一点点打钻有点杯水车薪,后来是用那种螺旋的钻,钻四个洞,相对位置大概是个长方形,这样子把中间这个长方形钻出来就比较容易地能拿出来了,后面的也容易搞出来了,后面的其实难度不是特别大了,主要是地沟打好之后得看看高低是不是符合要求的,不能本来是往外排水的反而外面高,这个怎么看就又很有技巧了,一般在地上的只要侧着看一下就好了,考究点就用下水平尺,但是在地下的,不用水平尺,其实可以借助于地沟里正要放进去的水管,放点水进去,看水往哪流就行了,铺好水管后,就剩填埋的活了,不是太麻烦了,那天真的是累到了,打那个混凝土的时候我真的是把我整个人压上去了,不过也挺爽的,有点把平时无处发泄的蛮力发泄出去了。

又 roll 到了一个以前做过的题,不过现在用 Java 也来写一下,是 easy 级别的,所以就简单说下

简要介绍

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.
就是给了两个链表,用来表示两个非负的整数,在链表中倒序放着,每个节点包含一位的数字,把他们加起来以后也按照原来的链表结构输出

样例

example 1

1
2
3
Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [7,0,8]
Explanation: 342 + 465 = 807.

example 2

1
2
Input: l1 = [0], l2 = [0]
Output: [0]

example 3

1
2
Input: l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
Output: [8,9,9,9,0,0,0,1]

题解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode root = new ListNode();
if (l1 == null && l2 == null) {
return root;
}
ListNode tail = root;
int entered = 0;
// 这个条件加了 entered,就是还有进位的数
while (l1 != null || l2 != null || entered != 0) {
int temp = entered;
if (l1 != null) {
temp += l1.val;
l1 = l1.next;
}
if (l2 != null) {
temp += l2.val;
l2 = l2.next;
}
entered = (temp - temp % 10) / 10;
tail.val = temp % 10;
// 循环内部的控制是为了排除最后的空节点
if (l1 != null || l2 != null || entered != 0) {
tail.next = new ListNode();
tail = tail.next;
}
}
// tail = null;
return root;
}

这里唯二需要注意的就是两个点,一个是循环条件需要包含进位值还存在的情况,还有一个是最后一个节点,如果是空的了,就不要在 new 一个出来了,写的比较挫

Java 真的是任何一个中间件,比较常用的那种,都有很多内容值得深挖,比如这个缓存,慢慢有过一些感悟,比如如何提升性能,缓存无疑是一大重要手段,最底层开始 CPU 就有缓存,而且又小又贵,再往上一点内存一般作为硬盘存储在运行时的存储,一般在代码里也会用内存作为一些本地缓存,譬如数据库,像 mysql 这种也是有innodb_buffer_pool来提升查询效率,本质上理解就是用更快的存储作为相对慢存储的缓存,减少查询直接访问较慢的存储,并且这个都是相对的,比起 cpu 的缓存,那内存也是渣,但是与普通机械硬盘相比,那也是两个次元的水平。

闲扯这么多来说说 mybatis 的缓存,mybatis 一般作为一个轻量级的 orm 使用,相对应的就是比较重量级的 hibernate,不过不在这次讨论范围,上一次是主要讲了 mybatis 在解析 sql 过程中,对于两种占位符的不同替换实现策略,这次主要聊下 mybatis 的缓存,前面其实得了解下前置的东西,比如 sqlsession,先当做我们知道 sqlsession 是个什么玩意,可能或多或少的知道 mybatis 是有两级缓存,

一级缓存

第一级的缓存是在 BaseExecutor 中的 PerpetualCache,它是个最基本的缓存实现类,使用了 HashMap 实现缓存功能,代码其实没几十行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
public class PerpetualCache implements Cache {

private final String id;

private final Map<Object, Object> cache = new HashMap<>();

public PerpetualCache(String id) {
this.id = id;
}

@Override
public String getId() {
return id;
}

@Override
public int getSize() {
return cache.size();
}

@Override
public void putObject(Object key, Object value) {
cache.put(key, value);
}

@Override
public Object getObject(Object key) {
return cache.get(key);
}

@Override
public Object removeObject(Object key) {
return cache.remove(key);
}

@Override
public void clear() {
cache.clear();
}

@Override
public boolean equals(Object o) {
if (getId() == null) {
throw new CacheException("Cache instances require an ID.");
}
if (this == o) {
return true;
}
if (!(o instanceof Cache)) {
return false;
}

Cache otherCache = (Cache) o;
return getId().equals(otherCache.getId());
}

@Override
public int hashCode() {
if (getId() == null) {
throw new CacheException("Cache instances require an ID.");
}
return getId().hashCode();
}

}

可以看一下BaseExecutor 的构造函数

1
2
3
4
5
6
7
8
9
protected BaseExecutor(Configuration configuration, Transaction transaction) {
this.transaction = transaction;
this.deferredLoads = new ConcurrentLinkedQueue<>();
this.localCache = new PerpetualCache("LocalCache");
this.localOutputParameterCache = new PerpetualCache("LocalOutputParameterCache");
this.closed = false;
this.configuration = configuration;
this.wrapper = this;
}

就是把 PerpetualCache 作为 localCache,然后怎么使用我看简单看一下,BaseExecutor 的查询首先是调用这个函数

1
2
3
4
5
6
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}

可以看到首先是调用了 createCacheKey 方法,这个方法呢,先不看怎么写的,如果我们自己要实现这么个缓存,首先这个缓存 key 的设计也是个问题,如果是以表名加主键作为 key,那么分页查询,或者没有主键的时候就不行,来看看 mybatis 是怎么设计的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@Override
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
CacheKey cacheKey = new CacheKey();
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
// mimic DefaultParameterHandler logic
for (ParameterMapping parameterMapping : parameterMappings) {
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
cacheKey.update(value);
}
}
if (configuration.getEnvironment() != null) {
// issue #176
cacheKey.update(configuration.getEnvironment().getId());
}
return cacheKey;
}

首先需要 id,这个 id 是 mapper 里方法的 id, 然后是偏移量跟返回行数,再就是 sql,然后是参数,基本上是会有影响的都加进去了,在这个 update 里面

1
2
3
4
5
6
7
8
9
10
11
public void update(Object object) {
int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object);

count++;
checksum += baseHashCode;
baseHashCode *= count;

hashcode = multiplier * hashcode + baseHashCode;

updateList.add(object);
}

其实是一个 hash 转换,具体不纠结,就是提高特异性,然后回来就是继续调用 query

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List<E> list;
try {
queryStack++;
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
// issue #601
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// issue #482
clearLocalCache();
}
}
return list;
}

可以看到是先从 localCache 里取,取不到再 queryFromDatabase,其实比较简单,这是一级缓存,考虑到 sqlsession 跟 BaseExecutor 的关系,其实是随着 sqlsession 来保证这个缓存不会出现脏数据幻读的情况,当然事务相关的后面可能再单独聊。

二级缓存

其实这个一级二级顺序有点反过来,其实查询的是先走的二级缓存,当然二级的需要配置开启,默认不开,
需要通过

1
<setting name="cacheEnabled" value="true"/>

来开启,然后我们的查询就会走到

1
2
3
4
public class CachingExecutor implements Executor {

private final Executor delegate;
private final TransactionalCacheManager tcm = new TransactionalCacheManager();

这个 Executor 中,这里我放了类里面的元素,发现没有一个 Cache 类,这就是一个特点了,往下看查询过程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameterObject);
CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);
return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}

@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
Cache cache = ms.getCache();
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
@SuppressWarnings("unchecked")
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
return delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}

看到没,其实缓存是从 tcm 这个成员变量里取,而这个是什么呢,事务性缓存(直译下),因为这个其实是用 MappedStatement 里的 Cache 作为key 从 tcm 的 map 取出来的

1
2
3
public class TransactionalCacheManager {

private final Map<Cache, TransactionalCache> transactionalCaches = new HashMap<>();

MappedStatement是被全局使用的,所以其实二级缓存是跟着 mapper 的 namespace 走的,可以被多个 CachingExecutor 获取到,就会出现线程安全问题,线程安全问题可以用SynchronizedCache来解决,就是加锁,但是对于事务中的脏读,使用了TransactionalCache来解决这个问题,

1
2
3
4
5
6
7
8
public class TransactionalCache implements Cache {

private static final Log log = LogFactory.getLog(TransactionalCache.class);

private final Cache delegate;
private boolean clearOnCommit;
private final Map<Object, Object> entriesToAddOnCommit;
private final Set<Object> entriesMissedInCache;

在事务还没提交的时候,会把中间状态的数据放在 entriesToAddOnCommit 中,只有在提交后会放进共享缓存中,

1
2
3
4
5
6
7
public void commit() {
if (clearOnCommit) {
delegate.clear();
}
flushPendingEntries();
reset();
}
0%