Nicksxs's Blog

What hurts more, the pain of hard work or the pain of regret?

这是个很大的话题了,可能会分成两部分说,第一部分就是所谓的零拷贝 ( zero-copy ),这一块其实也不新鲜,我对零拷贝的概念主要来自这篇文章,个人感觉写得非常好,在 rocketmq 中,最大的一块存储就是消息存储,也就是 CommitLog ,当然还有 ConsumeQueue 和 IndexFile,以及其他一些文件,CommitLog 的存储是以一个 1G 大小的文件作为存储单位,写完了就再建一个,那么如何提高这 1G 文件的读写效率呢,就是 mmap,传统意义的读写文件,read,write 都需要由系统调用,来回地在用户态跟内核态进行拷贝切换,

1
2
read(file, tmp_buf, len);
write(socket, tmp_buf, len);

vms95Z

如上面的图显示的,要在用户态跟内核态进行切换,数据还需要在内核缓冲跟用户缓冲之间拷贝多次,

  1. 第一步是调用 read,需要在用户态切换成内核态,DMA模块从磁盘中读取文件,并存储在内核缓冲区,相当于是第一次复制
  2. 数据从内核缓冲区被拷贝到用户缓冲区,read 调用返回,伴随着内核态又切换成用户态,完成了第二次复制
  3. 然后是write 写入,这里也会伴随着用户态跟内核态的切换,数据从用户缓冲区被复制到内核空间缓冲区,完成了第三次复制,这次有点不一样的是数据不是在内核缓冲区了,会复制到 socket buffer 中。
  4. write 系统调用返回,又切换回了用户态,然后数据由 DMA 拷贝到协议引擎。

如此就能看出其实默认的读写操作代价是非常大的,而在 rocketmq 等高性能中间件中都有使用的零拷贝技术,其中 rocketmq 使用的是 mmap

mmap

mmap基于 OS 的 mmap 的内存映射技术,通过MMU 映射文件,将文件直接映射到用户态的内存地址,使得对文件的操作不再是 write/read,而转化为直接对内存地址的操作,使随机读写文件和读写内存相似的速度。

mmap 把文件映射到用户空间里的虚拟内存,省去了从内核缓冲区复制到用户空间的过程,文件中的位置在虚拟内存中有了对应的地址,可以像操作内存一样操作这个文件,这样的文件读写文件方式少了数据从内核缓存到用户空间的拷贝,效率很高。

1
2
tmp_buf = mmap(file, len);
write(socket, tmp_buf, len);

I68mFx

第一步:mmap系统调用使得文件内容被DMA引擎复制到内核缓冲区。然后该缓冲区与用户进程共享,在内核和用户内存空间之间不进行任何拷贝。

第二步:写系统调用使得内核将数据从原来的内核缓冲区复制到与套接字相关的内核缓冲区。

第三步:第三次拷贝发生在DMA引擎将数据从内核套接字缓冲区传递给协议引擎时。

通过使用mmap而不是read,我们将内核需要拷贝的数据量减少了一半。当大量的数据被传输时,这将有很好的效果。然而,这种改进并不是没有代价的;在使用mmap+write方法时,有一些隐藏的陷阱。例如当你对一个文件进行内存映射,然后在另一个进程截断同一文件时调用写。你的写系统调用将被总线错误信号SIGBUS打断,因为你执行了一个错误的内存访问。该信号的默认行为是杀死进程并dumpcore–这对网络服务器来说不是最理想的操作。

有两种方法可以解决这个问题。

第一种方法是为SIGBUS信号安装一个信号处理程序,然后在处理程序中简单地调用返回。通过这样做,写系统调用会返回它在被打断之前所写的字节数,并将errno设置为成功。让我指出,这将是一个糟糕的解决方案,一个治标不治本的解决方案。因为SIGBUS预示着进程出了严重的问题,所以不鼓励使用这种解决方案。

第二个解决方案涉及内核的文件租赁(在Windows中称为 “机会锁”)。这是解决这个问题的正确方法。通过在文件描述符上使用租赁,你与内核在一个特定的文件上达成租约。然后你可以向内核请求一个读/写租约。当另一个进程试图截断你正在传输的文件时,内核会向你发送一个实时信号,即RT_SIGNAL_LEASE信号。它告诉你内核即将终止你对该文件的写或读租约。在你的程序访问一个无效的地址和被SIGBUS信号杀死之前,你的写调用会被打断了。写入调用的返回值是中断前写入的字节数,errno将被设置为成功。下面是一些示例代码,显示了如何从内核中获得租约。

1
2
3
4
5
6
7
8
9
if(fcntl(fd, F_SETSIG, RT_SIGNAL_LEASE) == -1) {
perror("kernel lease set signal");
return -1;
}
/* l_type can be F_RDLCK F_WRLCK */
if(fcntl(fd, F_SETLEASE, l_type)){
perror("kernel lease set type");
return -1;
}

rocketmq 里有一种比较特殊的用法,就是顺序消息,比如订单的生命周期里,在创建,支付,签收等状态轮转中,会发出来对应的消息,这里面就比较需要去保证他们的顺序,当然在处理的业务代码也可以做对应的处理,结合消息重投,但是如果这里消息就能保证顺序性了,那么业务代码就能更好的关注业务代码的处理。

首先有一种情况是全局的有序,比如对于一个 topic 里就得发送线程保证只有一个,内部的 queue 也只有一个,消费线程也只有一个,这样就能比较容易的保证全局顺序性了,但是这里的问题就是完全限制了性能,不是很现实,在真实场景里很多都是比如对于同一个订单,需要去保证状态的轮转是按照预期的顺序来,而不必要全局的有序性。

对于这类的有序性,需要在发送和接收方都有对应的处理,在发送消息中,需要去指定 selector,即MessageQueueSelector,能够以固定的方式是分配到对应的 MessageQueue

比如像 RocketMQ 中的示例

1
2
3
4
5
6
7
8
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Long id = (Long) arg; //message queue is selected by #salesOrderID
long index = id % mqs.size();
return mqs.get((int) index);
}
}, orderList.get(i).getOrderId());

而在消费侧有几个点比较重要,首先我们要保证一个 MessageQueue只被一个消费者消费,消费队列存在broker端,要保证 MessageQueue 只被一个消费者消费,那么消费者在进行消息拉取消费时就必须向mq服务器申请队列锁,消费者申请队列锁的代码存在于RebalanceService消息队列负载的实现代码中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
List<PullRequest> pullRequestList = new ArrayList<PullRequest>();
for (MessageQueue mq : mqSet) {
if (!this.processQueueTable.containsKey(mq)) {
// 判断是否顺序,如果是顺序消费的,则需要加锁
if (isOrder && !this.lock(mq)) {
log.warn("doRebalance, {}, add a new mq failed, {}, because lock failed", consumerGroup, mq);
continue;
}

this.removeDirtyOffset(mq);
ProcessQueue pq = new ProcessQueue();
long nextOffset = this.computePullFromWhere(mq);
if (nextOffset >= 0) {
ProcessQueue pre = this.processQueueTable.putIfAbsent(mq, pq);
if (pre != null) {
log.info("doRebalance, {}, mq already exists, {}", consumerGroup, mq);
} else {
log.info("doRebalance, {}, add a new mq, {}", consumerGroup, mq);
PullRequest pullRequest = new PullRequest();
pullRequest.setConsumerGroup(consumerGroup);
pullRequest.setNextOffset(nextOffset);
pullRequest.setMessageQueue(mq);
pullRequest.setProcessQueue(pq);
pullRequestList.add(pullRequest);
changed = true;
}
} else {
log.warn("doRebalance, {}, add new mq failed, {}", consumerGroup, mq);
}
}
}

在申请到锁之后会创建 pullRequest 进行消息拉取,消息拉取部分的代码实现在PullMessageService中,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@Override
public void run() {
log.info(this.getServiceName() + " service started");

while (!this.isStopped()) {
try {
PullRequest pullRequest = this.pullRequestQueue.take();
this.pullMessage(pullRequest);
} catch (InterruptedException ignored) {
} catch (Exception e) {
log.error("Pull Message Service Run Method exception", e);
}
}

log.info(this.getServiceName() + " service end");
}

消息拉取完后,需要提交到ConsumeMessageService中进行消费,顺序消费的实现为ConsumeMessageOrderlyService,提交消息进行消费的方法为ConsumeMessageOrderlyService#submitConsumeRequest,具体实现如下:

1
2
3
4
5
6
7
8
9
10
11
@Override
public void submitConsumeRequest(
final List<MessageExt> msgs,
final ProcessQueue processQueue,
final MessageQueue messageQueue,
final boolean dispathToConsume) {
if (dispathToConsume) {
ConsumeRequest consumeRequest = new ConsumeRequest(processQueue, messageQueue);
this.consumeExecutor.submit(consumeRequest);
}
}

构建了一个ConsumeRequest对象,它是个实现了 runnable 接口的类,并提交给了线程池来并行消费,看下顺序消费的ConsumeRequest的run方法实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
@Override
public void run() {
if (this.processQueue.isDropped()) {
log.warn("run, the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
return;
}
// 获得 Consumer 消息队列锁,即单个线程独占
final Object objLock = messageQueueLock.fetchLockObject(this.messageQueue);
synchronized (objLock) {
// (广播模式) 或者 (集群模式 && Broker消息队列锁有效)
if (MessageModel.BROADCASTING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
|| (this.processQueue.isLocked() && !this.processQueue.isLockExpired())) {
final long beginTime = System.currentTimeMillis();
// 循环
for (boolean continueConsume = true; continueConsume; ) {
if (this.processQueue.isDropped()) {
log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
break;
}

// 消息队列分布式锁未锁定,提交延迟获得锁并消费请求
if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
&& !this.processQueue.isLocked()) {
log.warn("the message queue not locked, so consume later, {}", this.messageQueue);
ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
break;
}

// 消息队列分布式锁已经过期,提交延迟获得锁并消费请求
if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
&& this.processQueue.isLockExpired()) {
log.warn("the message queue lock expired, so consume later, {}", this.messageQueue);
ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
break;
}
// 当前周期消费时间超过连续时长,默认:60s,提交延迟消费请求。默认情况下,每消费1分钟休息10ms。
long interval = System.currentTimeMillis() - beginTime;
if (interval > MAX_TIME_CONSUME_CONTINUOUSLY) {
ConsumeMessageOrderlyService.this.submitConsumeRequestLater(processQueue, messageQueue, 10);
break;
}
// 获取消费消息。此处和并发消息请求不同,并发消息请求已经带了消费哪些消息。
final int consumeBatchSize =
ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumeMessageBatchMaxSize();

List<MessageExt> msgs = this.processQueue.takeMessags(consumeBatchSize);
defaultMQPushConsumerImpl.resetRetryAndNamespace(msgs, defaultMQPushConsumer.getConsumerGroup());
if (!msgs.isEmpty()) {
final ConsumeOrderlyContext context = new ConsumeOrderlyContext(this.messageQueue);

ConsumeOrderlyStatus status = null;

ConsumeMessageContext consumeMessageContext = null;
if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext = new ConsumeMessageContext();
consumeMessageContext
.setConsumerGroup(ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumerGroup());
consumeMessageContext.setNamespace(defaultMQPushConsumer.getNamespace());
consumeMessageContext.setMq(messageQueue);
consumeMessageContext.setMsgList(msgs);
consumeMessageContext.setSuccess(false);
// init the consume context type
consumeMessageContext.setProps(new HashMap<String, String>());
ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
}
// 执行消费
long beginTimestamp = System.currentTimeMillis();
ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
boolean hasException = false;
try {
this.processQueue.getLockConsume().lock(); // 锁定处理队列
if (this.processQueue.isDropped()) {
log.warn("consumeMessage, the message queue not be able to consume, because it's dropped. {}",
this.messageQueue);
break;
}

status = messageListener.consumeMessage(Collections.unmodifiableList(msgs), context);
} catch (Throwable e) {
log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
RemotingHelper.exceptionSimpleDesc(e),
ConsumeMessageOrderlyService.this.consumerGroup,
msgs,
messageQueue);
hasException = true;
} finally {
this.processQueue.getLockConsume().unlock(); // 解锁
}

if (null == status
|| ConsumeOrderlyStatus.ROLLBACK == status
|| ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
log.warn("consumeMessage Orderly return not OK, Group: {} Msgs: {} MQ: {}",
ConsumeMessageOrderlyService.this.consumerGroup,
msgs,
messageQueue);
}

long consumeRT = System.currentTimeMillis() - beginTimestamp;
if (null == status) {
if (hasException) {
returnType = ConsumeReturnType.EXCEPTION;
} else {
returnType = ConsumeReturnType.RETURNNULL;
}
} else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) {
returnType = ConsumeReturnType.TIME_OUT;
} else if (ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
returnType = ConsumeReturnType.FAILED;
} else if (ConsumeOrderlyStatus.SUCCESS == status) {
returnType = ConsumeReturnType.SUCCESS;
}

if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name());
}

if (null == status) {
status = ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT;
}

if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext.setStatus(status.toString());
consumeMessageContext
.setSuccess(ConsumeOrderlyStatus.SUCCESS == status || ConsumeOrderlyStatus.COMMIT == status);
ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
}

ConsumeMessageOrderlyService.this.getConsumerStatsManager()
.incConsumeRT(ConsumeMessageOrderlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT);

continueConsume = ConsumeMessageOrderlyService.this.processConsumeResult(msgs, status, context, this);
} else {
continueConsume = false;
}
}
} else {
if (this.processQueue.isDropped()) {
log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
return;
}

ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 100);
}
}
}

获取到锁对象后,使用synchronized尝试申请线程级独占锁。

如果加锁成功,同一时刻只有一个线程进行消息消费。

如果加锁失败,会延迟100ms重新尝试向broker端申请锁定messageQueue,锁定成功后重新提交消费请求

创建消息拉取任务时,消息客户端向broker端申请锁定MessageQueue,使得一个MessageQueue同一个时刻只能被一个消费客户端消费。

消息消费时,多线程针对同一个消息队列的消费先尝试使用synchronized申请独占锁,加锁成功才能进行消费,使得一个MessageQueue同一个时刻只能被一个消费客户端中一个线程消费。
这里其实还有很重要的一点是对processQueue的加锁,这里其实是保证了在 rebalance的过程中如果 processQueue 被分配给了另一个 consumer,但是当前已经被我这个 consumer 再消费,但是没提交,就有可能出现被两个消费者消费,所以得进行加锁保证不受 rebalance 影响。

前面主要还是说了乒乓球的,因为整体还是乒乓球的比赛赛程比较长,比较激烈,扣人心弦,记得那会在公司没法看视频直播,就偶尔看看奥运会官网的比分,还几场马龙樊振东,陈梦被赢了一局就吓尿了,已经被混双那场留下了阴影,其实后面去看看16 年的比赛什么的,中国队虽然拿了这么多冠军,但是自改成 11 分制以来,其实都没办法那么完全彻底地碾压,而且像张继科,樊振东,陈梦都多少有些慢热,现在看来是马龙比较全面,不过看过了马龙,刘国梁,许昕等的一些过往经历,都是起起伏伏,即使是张怡宁这样的大魔王,也经历过逢王楠不赢的阶段,心态无法调整好。

其实最开始是举重项目,侯志慧是女子 49 公斤级的冠军,这场比赛是全场都看,其实看中国队的举重比赛跟跳水有点像,每一轮都需要到最后才能等到中国队,跳水其实每轮都有,举重会按照自己报的试举重量进行排名,重量大的会在后面举,抓举和挺举各三次试举机会,有时候会看着比较焦虑,一直等不来,怕一上来就没试举成功,而且中国队一般试举重量就是很大的,容易一次试举不成功就马上下一次,连着举其实压力会非常大,说实话真的是外行看热闹,每次都是多懂一点点,这次由于实在是比较无聊,所以看的会比较专心点,对于对应的规则知识点也会多了解一点,同时对于举重,没想到我们国家的这些运动员有这么强,最后八块金牌拿了七块,有一块拿到银牌也是有点因为教练的策略问题,这里其实也稍微知道一点,因为报上去的试举重量是谁小谁先举,并且我们国家都是实力非常强的,所以都会报大一些,并且如果这个项目有实力相近的选手,会比竞对多报一公斤,这样子如果前面竞争对手没举成功,我们把握就很大了,最坏的情况即使对手试举成功了,我们还有机会搏一把,比如谌利军这样的,只是说说感想,举重运动员真的是个比较单纯的群体,而且训练是非常痛苦枯燥的,非常容易受伤,像挺举就有点会压迫呼吸通道,看到好几个都是脸憋得通红,甚至直接因为压迫气道而没法完成后面的挺举,像之前 16 年的举重比赛,有个运动员没成功夺冠就非常愧疚地哭着说对不起祖国,没有获得冠军,这是怎么样的一种歉疚,怎么样的一种纯粹的感情呢,相对应地来说,我又要举男足,男篮的例子了,很多人在那嘲笑我这样对男足男篮愤愤不平的人,说可能我这样的人都没交个税(从缴纳个税的数量比例来算有可能),只是这里有两个打脸的事情,我足额缴纳个税,接近 20%的薪资都缴了个税,并且我买的所有东西都缴了增值税,如果让我这样缴纳了个税,缴纳了增值税的有个人的投票权,我一定会投票不让男足男篮使用我缴纳我的税金,用我们的缴纳的税,打出这么烂的表现,想乒乓球混双,拿个亚军都会被喷,那可是世界第二了,而且是就输了那么一场,足球篮球呢,我觉得是一方面成绩差,因为比赛真的有状态跟心态的影响,偶尔有一场失误非常正常,NBA 被黑八的有这么多强队,但是如果像男足男篮,成绩是越来越差,用范志毅的话来说就是脸都不要了,还有就是精气神,要在比赛中打出胜负欲,保持这种争胜心,才有机会再进步,前火箭队主教练鲁迪·汤姆贾诺维奇的话,“永远不要低估冠军的决心”,即使我现在打不过你,我会在下一次,下下次打败你,竞技体育永远要有这种精神,可以接受一时的失败,但是要保持永远争胜的心。

第一块金牌是杨倩拿下的,中国队拿奥运会首金也是有政治任务的,而恰恰杨倩这个金牌也有点碰巧是对手最后一枪失误了,当然竞技体育,特别是射击,真的是容不得一点点失误,像前面几届的美国神通埃蒙斯,失之毫厘差之千里,但是这个具体评价就比较少,唯一一点让我比较出戏的就是杨倩真的非常像王刚的徒弟漆二娃,哈哈,微博上也有挺多人觉得像,射击还是个比较可以接受年纪稍大的运动员,需要经验和稳定性,相对来说爆发力体力稍好一点,像庞伟这样的,混合团体10米气手枪金牌,36 岁可能其他项目已经是年龄很大了,不过前面说的举重的吕小军军神也是年纪蛮大了,但是非常强,而且在油管上简直就是个神,相对来说射击是关注比较少,杨倩的也只是看了后面拿到冠军这个结果,有些因为时间或者电视上没放,但是成绩还是不错的,没多少喷点。

第二篇先到这,纯主观,轻喷。

redis 在使用 rdb 策略进行备份时,rdb 的意思是会在开启备份的时候将开启时间点的内存数据进行备份,并且可以设置时间,这样子就是这个策略其实还是不完全可靠的,如果是在这个间隔中宕机了,或者间隔过长,不过这个不在这次的要说的内容中,如果自己去写这个 rdb 的策略可能就有点类似于 mvcc 的 redolog,需要知道这个时间点之前的数据是怎么样的,防止后面更改的干扰,但是这样一方面需要有比较复杂的 mvcc 实现,另一方面是很占用存储空间,所以 redis 在这里面使用了 COW (Copy On Write) 技术,这个技术呢以前听过,也大致了解是怎么个意思,这次稍微具体地来看下,其实 redis 的 copy-on-write 就是来自于 linux 的 cow

Linux中的CopyOnWrite

fork()之后,kernel把父进程中所有的内存页的权限都设为read-only,然后子进程的地址空间指向父进程。当父子进程都只读内存时,相安无事。当其中某个进程写内存时,CPU硬件检测到内存页是read-only的,于是触发页异常中断(page-fault),陷入kernel的一个中断例程。中断例程中,kernel就会把触发的异常的页复制一份,于是父子进程各自持有独立的一份。这个操作其实可以类比为写屏障,正常的读取是没问题的,当有写入时就会分裂。

CopyOnWrite的好处:

1、减少分配和复制资源时带来的瞬时延迟;
2、减少不必要的资源分配;
CopyOnWrite的缺点:
1、如果父子进程都需要进行大量的写操作,会产生大量的分页错误(页异常中断page-fault);

Redis中的CopyOnWrite

Redis在持久化时,如果是采用BGSAVE命令或者BGREWRITEAOF的方式,那Redis会fork出一个子进程来读取数据,从而写到磁盘中。
总体来看,Redis还是读操作比较多。如果子进程存在期间,发生了大量的写操作,那可能就会出现很多的分页错误(页异常中断page-fault),这样就得耗费不少性能在复制上。
而在rehash阶段上,写操作是无法避免的。所以Redis在fork出子进程之后,将负载因子阈值提高,尽量减少写操作,避免不必要的内存写入操作,最大限度地节约内存。这里其实更巧妙了,在细节上去优化会产生大量页异常中断的情况。

这届奥运会有可能是我除了 08 年之外关注度最高的一届奥运会,原因可能是因为最近也没什么电影综艺啥的比较好看,前面看跑男倒还行,不是说多好,也就图一乐,最开始看向往的生活觉得也挺不错的,后面变成了统一来了就看黄磊做饭,然后夸黄磊做饭好吃,然后无聊的说这种生活多么多么美好,单调无聊,差不多弃了,这里面还包括大华不在了,大华其实个人还是有点呱噪的,但是挺能搞气氛,并且也有才华,彭彭跟子枫人是不讨厌,但是撑不起来,所以也导致了前面说的结果,都变成了黄磊彩虹屁现场,虽然偶尔怀疑他是否做得好吃,但是整体还是承认的,可对于一个这么多季了的综艺来说,这样也有点单调了。

还有奥运会像乒乓球,篮球,跳水这几个都是比较喜欢的项目,篮球🏀是从初中开始就也有在自己在玩的,虽然因为身高啊体质基本没什么天赋,但也算是热爱驱动,差不多到了大学因为比较懒才放下了,初中高中还是有很多时间花在上面,不像别人经常打球跑跑跳跳还能长高,我反而一直都没长个子,也因为这个其实蛮遗憾的,后面想想可能是初中的时候远走他乡去住宿读初中,伙食营养跟不上导致的,可能也是自己的一厢情愿吧,总觉得应该还能再长点个,这一点以后我自己的小孩我应该会特别注意这段时间他/她的营养摄入了;然后像乒乓球🏓的话其实小时候是比较讨厌的,因为家里人,父母都没有这类爱好习惯,我也完全不会,但是小学那会班里的“恶霸”就以公平之名要我们男生每个人都排队打几个,我这种不会的反而又要被嘲笑,这个小时候的阴影让我有了比较不好的印象,对它🏓的改观是在工作以后,前司跟一个同样不会的同事经常在饭点会打打,而且那会因为这个其实身体得到了锻炼,感觉是个不错的健身方式,然后又是中国的优势项目,小时候跟着我爸看孔令辉,那时候完全不懂,印象就觉得老瓦很牛,后面其实也没那么关注,上一届好像看了马龙的比赛;跳水也是中国的优势项目,而且也比较简单,不是说真的很简单,就是我们外行观众看着就看看水花大小图一乐。

这次的观赛过程其实主要还是在乒乓球上面,现在都有点怪我的乌鸦嘴,混双我一直就不太放心(关我什么事,我也不专业),然后一直觉得混双是不是不太稳,结果那天看的时候也是因为央视一套跟五套都没放,我家的有线电视又是没有五加体育,然后用电脑投屏就很卡,看得也很不爽,同时那天因为看的时候已经是 2:0还是再后面点了,一方面是不懂每队只有一次暂停,另一方面不知道已经用过暂停了,所以就特别怀疑马林是不是只会无脑鼓掌,感觉作为教练,并且是前冠军,应该也能在擦汗间隙,或者局间休息调整的时候多给些战略战术的指导,类似于后面男团小胖打奥恰洛夫,像解说都看出来了,其实奥恰那会的反手特别顺,打得特别凶,那就不能让他能特别顺手的上反手位,这当然是外行比较粗浅的看法,在混双过程中其实除了这个,还有让人很不爽的就是我们的许昕跟刘诗雯有种拿不出破釜沉舟的勇气的感觉,在气势上完全被对面两位日本乒乓球最讨厌的两位对手压制着,我都要输了,我就每一颗都要不让你好过,因为真的不是说没有实力,对面水谷隼也不是多么多么强的,可能上一届男团许昕输给他还留着阴影,但是以许昕 19 年男单世界第一的实力,目前也排在世界前三,输一场不应该成为这种阻力,有一些失误也很可惜,后面孙颖莎真的打得很解气,第二局一度以为又要被翻盘了,结果来了个大逆转,女团的时候也是,感觉在心态上孙颖莎还是很值得肯定的,少年老成这个词很适合,看其他的视频也觉得莎莎萌萌哒,陈梦总感觉还欠一点王者霸气,王曼昱还是可以的,反手很凶,我觉得其实这一届日本女乒就是打得非常凶,即使像平野这种看着很弱的妹子,打的球可一点都不弱,也是这种凶狠的打法,有点要压制中国的感觉,这方面我觉得是需要改善的,打这种要不就是实力上的完全碾压,要不就是我实力虽然比较没强多少,但是你狠我打得比你还狠,越保守越要输,我不太成熟的想法是这样的,还有就是面对逆境,这个就要说到男队的了,樊振东跟马龙在半决赛的时候,特别是男团的第二盘,樊振东打奥恰很好地表现了这个心态,当然樊振东我不是特别了解,据说他是比较善于打相持,比较善于焦灼的情况,不过整体看下来樊振东还是有一些欠缺,就是面对情况的快速转变应对,这一点也是马龙特别强的,虽然看起来马龙真的是年纪大了点,没有 16 年那会满头发胶,油光锃亮的大背头和满脸胶原蛋白的意气风发,大范围运动能力也弱了一点,但是经验和能力的全面性也让他最终能再次站上巅峰,还是非常佩服的,这里提一下张继科,虽然可能天赋上是张继科更强点,但是男乒一直都是有强者出现,能为国家队付出这么多并且一直坚持的可不是人人都可以,即使现在同台竞技马龙打不过张继科我还是更喜欢马龙。再来说说我们的对手,主要分三部分,德国男乒,里面有波尔(我刚听到的时候在想怎么又出来个叫波尔的,是不是像举重的石智勇一样,又来一个同名的,结果是同一个,已经四十岁了),这真是个让人敬佩的对手,实力强,经验丰富,虽然男单有点可惜,但是帮助男团获得银牌,真的是起到了定海神针的作用;奥恰洛夫,以前完全不认识,或者说看过也忘了,这次是真的有点意外,竟然有这么个马龙护法,其实他也坦言非常想赢一次马龙,并且在半决赛也非常接近赢得比赛,是个实力非常强的对手,就是男团半决赛输给张本智和有点可惜,有点被打蒙的感觉,佛朗西斯卡的话也是实力不错的选手,就是可能被奥恰跟波尔的光芒掩盖了,跟波尔在男团第一盘男双的比赛中打败日本那对男双也是非常给力的,说实话,最后打国乒的时候的确是国乒实力更胜一筹,但是即使德国赢了我也是充满尊敬,拼的就是硬实力,就像第二盘奥恰打樊振东,反手是真的很强,反过来看奥恰可能也不是很善于快速调整,樊振东打出来自己的节奏,主攻奥恰的中路,他好像没什么好办法解决。再来说我最讨厌的日本,嗯,小日本,张本智和、水谷隼、伊藤美诚,一一评价下(我是外行,绝对主观评价),张本智和,父母也是中国人,原来叫张智和,改日本籍后加了个本,被微博网友笑称日本尖叫鸡,男单输给了斯洛文尼亚选手,男团里是赢了两场,但是在我看来其实实力上可能比不上全力的奥恰,主要是特别能叫,会干扰对手,如果觉得这种也是种能力我也无话可说,要是有那种吼声能直接把对手震聋的,都不需要打比赛了,我简单记了下,赢一颗球,他要叫八声,用 LD 的话来说烦都烦死了,心态是在面对一些困境顺境的应对调整适应能力,而不是对这种噪音的适应能力,至少我是这么看的,所以我很期待樊振东能好好地虐虐他,因为其他像林昀儒真的是非常优秀的新选手,所谓的国乒克星估计也是小日本自己说说的,国乒其实有很多对手,马龙跟樊振东在男单半决赛碰到的这两个几乎都差点把他们掀翻了,所以还是练好自己的实力再来吹吧,免得打脸;水谷隼的话真的是长相就是特别地讨厌,还搞出那套不打比赛的姿态,男团里被波尔干掉就是很好的例子,波尔虽然真的很强,但毕竟 40 岁了,跟伊藤美诚一起说了吧,伊藤实力说实话是有的,混双中很大一部分的赢面来自于她,刘诗雯做了手术状态不好,许昕失误稍多,但是这种赢球了就感觉我赢了你一辈子一场没输的感觉,还有那种不知道怎么形容的笑,实力强的正常打比赛的我都佩服,像女团决赛里,平野跟石川佳纯的打法其实也很凶狠,但是都是正常的比赛,即使中国队两位实力不济输了也很正常,这种就真的需要像孙颖莎这样的小魔王无视各种魔法攻击,无视你各种花里胡哨的打法的人好好教训一下,混双输了以后了解了下她,感觉实力真的不错,是个大威胁,但是其实我们孙颖莎也是经历了九个月的继续成长,像张怡宁也评价了她,可能后面就没什么空间了,当然如果由张怡宁来打她就更适合了,净整这些有的没的,就打得你没脾气。

乒乓球的说的有点多,就分篇说了,第一篇先到这。

0%