聊一下 RocketMQ 的顺序消息
rocketmq 里有一种比较特殊的用法,就是顺序消息,比如订单的生命周期里,在创建,支付,签收等状态轮转中,会发出来对应的消息,这里面就比较需要去保证他们的顺序,当然在处理的业务代码也可以做对应的处理,结合消息重投,但是如果这里消息就能保证顺序性了,那么业务代码就能更好的关注业务代码的处理。
首先有一种情况是全局的有序,比如对于一个 topic 里就得发送线程保证只有一个,内部的 queue 也只有一个,消费线程也只有一个,这样就能比较容易的保证全局顺序性了,但是这里的问题就是完全限制了性能,不是很现实,在真实场景里很多都是比如对于同一个订单,需要去保证状态的轮转是按照预期的顺序来,而不必要全局的有序性。
对于这类的有序性,需要在发送和接收方都有对应的处理,在发送消息中,需要去指定 selector,即MessageQueueSelector
,能够以固定的方式是分配到对应的 MessageQueue
比如像 RocketMQ 中的示例1
2
3
4
5
6
7
8SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Long id = (Long) arg; //message queue is selected by #salesOrderID
long index = id % mqs.size();
return mqs.get((int) index);
}
}, orderList.get(i).getOrderId());
而在消费侧有几个点比较重要,首先我们要保证一个 MessageQueue只被一个消费者消费,消费队列存在broker端,要保证 MessageQueue 只被一个消费者消费,那么消费者在进行消息拉取消费时就必须向mq服务器申请队列锁,消费者申请队列锁的代码存在于RebalanceService消息队列负载的实现代码中。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31List<PullRequest> pullRequestList = new ArrayList<PullRequest>();
for (MessageQueue mq : mqSet) {
if (!this.processQueueTable.containsKey(mq)) {
// 判断是否顺序,如果是顺序消费的,则需要加锁
if (isOrder && !this.lock(mq)) {
log.warn("doRebalance, {}, add a new mq failed, {}, because lock failed", consumerGroup, mq);
continue;
}
this.removeDirtyOffset(mq);
ProcessQueue pq = new ProcessQueue();
long nextOffset = this.computePullFromWhere(mq);
if (nextOffset >= 0) {
ProcessQueue pre = this.processQueueTable.putIfAbsent(mq, pq);
if (pre != null) {
log.info("doRebalance, {}, mq already exists, {}", consumerGroup, mq);
} else {
log.info("doRebalance, {}, add a new mq, {}", consumerGroup, mq);
PullRequest pullRequest = new PullRequest();
pullRequest.setConsumerGroup(consumerGroup);
pullRequest.setNextOffset(nextOffset);
pullRequest.setMessageQueue(mq);
pullRequest.setProcessQueue(pq);
pullRequestList.add(pullRequest);
changed = true;
}
} else {
log.warn("doRebalance, {}, add new mq failed, {}", consumerGroup, mq);
}
}
}
在申请到锁之后会创建 pullRequest 进行消息拉取,消息拉取部分的代码实现在PullMessageService中,1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public void run() {
log.info(this.getServiceName() + " service started");
while (!this.isStopped()) {
try {
PullRequest pullRequest = this.pullRequestQueue.take();
this.pullMessage(pullRequest);
} catch (InterruptedException ignored) {
} catch (Exception e) {
log.error("Pull Message Service Run Method exception", e);
}
}
log.info(this.getServiceName() + " service end");
}
消息拉取完后,需要提交到ConsumeMessageService中进行消费,顺序消费的实现为ConsumeMessageOrderlyService,提交消息进行消费的方法为ConsumeMessageOrderlyService#submitConsumeRequest,具体实现如下:1
2
3
4
5
6
7
8
9
10
11
public void submitConsumeRequest(
final List<MessageExt> msgs,
final ProcessQueue processQueue,
final MessageQueue messageQueue,
final boolean dispathToConsume) {
if (dispathToConsume) {
ConsumeRequest consumeRequest = new ConsumeRequest(processQueue, messageQueue);
this.consumeExecutor.submit(consumeRequest);
}
}
构建了一个ConsumeRequest对象,它是个实现了 runnable 接口的类,并提交给了线程池来并行消费,看下顺序消费的ConsumeRequest的run方法实现:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
public void run() {
if (this.processQueue.isDropped()) {
log.warn("run, the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
return;
}
// 获得 Consumer 消息队列锁,即单个线程独占
final Object objLock = messageQueueLock.fetchLockObject(this.messageQueue);
synchronized (objLock) {
// (广播模式) 或者 (集群模式 && Broker消息队列锁有效)
if (MessageModel.BROADCASTING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
|| (this.processQueue.isLocked() && !this.processQueue.isLockExpired())) {
final long beginTime = System.currentTimeMillis();
// 循环
for (boolean continueConsume = true; continueConsume; ) {
if (this.processQueue.isDropped()) {
log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
break;
}
// 消息队列分布式锁未锁定,提交延迟获得锁并消费请求
if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
&& !this.processQueue.isLocked()) {
log.warn("the message queue not locked, so consume later, {}", this.messageQueue);
ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
break;
}
// 消息队列分布式锁已经过期,提交延迟获得锁并消费请求
if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
&& this.processQueue.isLockExpired()) {
log.warn("the message queue lock expired, so consume later, {}", this.messageQueue);
ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
break;
}
// 当前周期消费时间超过连续时长,默认:60s,提交延迟消费请求。默认情况下,每消费1分钟休息10ms。
long interval = System.currentTimeMillis() - beginTime;
if (interval > MAX_TIME_CONSUME_CONTINUOUSLY) {
ConsumeMessageOrderlyService.this.submitConsumeRequestLater(processQueue, messageQueue, 10);
break;
}
// 获取消费消息。此处和并发消息请求不同,并发消息请求已经带了消费哪些消息。
final int consumeBatchSize =
ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumeMessageBatchMaxSize();
List<MessageExt> msgs = this.processQueue.takeMessags(consumeBatchSize);
defaultMQPushConsumerImpl.resetRetryAndNamespace(msgs, defaultMQPushConsumer.getConsumerGroup());
if (!msgs.isEmpty()) {
final ConsumeOrderlyContext context = new ConsumeOrderlyContext(this.messageQueue);
ConsumeOrderlyStatus status = null;
ConsumeMessageContext consumeMessageContext = null;
if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext = new ConsumeMessageContext();
consumeMessageContext
.setConsumerGroup(ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumerGroup());
consumeMessageContext.setNamespace(defaultMQPushConsumer.getNamespace());
consumeMessageContext.setMq(messageQueue);
consumeMessageContext.setMsgList(msgs);
consumeMessageContext.setSuccess(false);
// init the consume context type
consumeMessageContext.setProps(new HashMap<String, String>());
ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
}
// 执行消费
long beginTimestamp = System.currentTimeMillis();
ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
boolean hasException = false;
try {
this.processQueue.getLockConsume().lock(); // 锁定处理队列
if (this.processQueue.isDropped()) {
log.warn("consumeMessage, the message queue not be able to consume, because it's dropped. {}",
this.messageQueue);
break;
}
status = messageListener.consumeMessage(Collections.unmodifiableList(msgs), context);
} catch (Throwable e) {
log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
RemotingHelper.exceptionSimpleDesc(e),
ConsumeMessageOrderlyService.this.consumerGroup,
msgs,
messageQueue);
hasException = true;
} finally {
this.processQueue.getLockConsume().unlock(); // 解锁
}
if (null == status
|| ConsumeOrderlyStatus.ROLLBACK == status
|| ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
log.warn("consumeMessage Orderly return not OK, Group: {} Msgs: {} MQ: {}",
ConsumeMessageOrderlyService.this.consumerGroup,
msgs,
messageQueue);
}
long consumeRT = System.currentTimeMillis() - beginTimestamp;
if (null == status) {
if (hasException) {
returnType = ConsumeReturnType.EXCEPTION;
} else {
returnType = ConsumeReturnType.RETURNNULL;
}
} else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) {
returnType = ConsumeReturnType.TIME_OUT;
} else if (ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
returnType = ConsumeReturnType.FAILED;
} else if (ConsumeOrderlyStatus.SUCCESS == status) {
returnType = ConsumeReturnType.SUCCESS;
}
if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name());
}
if (null == status) {
status = ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT;
}
if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext.setStatus(status.toString());
consumeMessageContext
.setSuccess(ConsumeOrderlyStatus.SUCCESS == status || ConsumeOrderlyStatus.COMMIT == status);
ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
}
ConsumeMessageOrderlyService.this.getConsumerStatsManager()
.incConsumeRT(ConsumeMessageOrderlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT);
continueConsume = ConsumeMessageOrderlyService.this.processConsumeResult(msgs, status, context, this);
} else {
continueConsume = false;
}
}
} else {
if (this.processQueue.isDropped()) {
log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
return;
}
ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 100);
}
}
}
获取到锁对象后,使用synchronized尝试申请线程级独占锁。
如果加锁成功,同一时刻只有一个线程进行消息消费。
如果加锁失败,会延迟100ms重新尝试向broker端申请锁定messageQueue,锁定成功后重新提交消费请求
创建消息拉取任务时,消息客户端向broker端申请锁定MessageQueue,使得一个MessageQueue同一个时刻只能被一个消费客户端消费。
消息消费时,多线程针对同一个消息队列的消费先尝试使用synchronized申请独占锁,加锁成功才能进行消费,使得一个MessageQueue同一个时刻只能被一个消费客户端中一个线程消费。
这里其实还有很重要的一点是对processQueue的加锁,这里其实是保证了在 rebalance的过程中如果 processQueue 被分配给了另一个 consumer,但是当前已经被我这个 consumer 再消费,但是没提交,就有可能出现被两个消费者消费,所以得进行加锁保证不受 rebalance 影响。